
Raythena: 
job scheduling
on next
generation HPCs

Paolo Calafiura, Vakho Tsulaia, Charles Leggett,
Illya Shapoval, Julien Esseiva, Rollin Thomas,

Miha Muškinja 
 

4th US ATLAS HPC Meeting 
Thursday 26 September 2019 

LBNL

26 September 2019 Miha Muškinja

Introduction

• In view of the increasing availability of heterogeneous HPCs we are exploring
the applicability of a modern distributed execution framework for ATLAS
workflows— Ray1,

• Ray was originally designed for end-to-end large-scale AI applications and
aims to simplify complex parallel systems using a simple Python interface,
- It allows the user to easily express parallelism while also capturing data

dependencies,
- Efficiently handles processing 

of large datasets across many 
compute nodes.

• New project for us and it was 
presented for the first time at 
the ATLAS S&C Week in NY 
this year in June.

"2

[1]: https://github.com/ray-project/ray

https://github.com/ray-project/ray

26 September 2019 Miha Muškinja

Advantages of using Ray for ATLAS workflows

• Ray is widely used by the broader community and centrally maintained.
Using Ray would eliminate the need of supporting some of the ATLAS home-
built software,

• Developed by RiseLab at UC Berkeley. We are collaborating directly with the
developers (Ion Stoica, et. al.),

• Proven to be scalable on HPCs,
• Ray is lightweight and easy to install (e.g. as a module on an HPC),
• Ray fits well into the modular scheme of Run 3 job scheduling as an

intermediate layer. Once we have the Ray workflow, we could also replace
Ray with any other task parallel framework (e.g. Dask, Spark).

"3

26 September 2019 Miha Muškinja

First application: ATLAS Event Service with Ray— Raythena

"4

iopscience/10.1088/1742-6596/664/9/092025/pdf

We implemented a
prototype of this
scheme with Ray.

Current ATLAS default

https://iopscience.iop.org/article/10.1088/1742-6596/664/9/092025/pdf

26 September 2019 Miha Muškinja

Ray-based ATLAS Event Service: Raythena

"5

Ray Driver
application

Ray Actors (1 per node)

AthenaMP instance

core1 core2 core3 core4 core5

core6 core7 core8 core9 …

Message Passing  
Library (yampl)

‘Main’ node If any CPU core ready, send  
new event range to AthenaMP

Actor reports finished  
events back to the Driver. 
 
In case of a failure, send the  
event range again to the first 
available worker.

Shared FSPointers to event ranges from
input files to be processed

Athena jobs to
merge the output
when enough
events are
processed

github.com/ray-project/ray

https://github.com/ray-project/ray

26 September 2019 Miha Muškinja

Working example on Cori at NERSC

"6

• Successfully tested the Raythena workflow on Cori Haswell and KNL nodes
at NERSC,

• We are running ID-only simulation jobs (for faster turnaround) 
with recent master nightlies,

• Athena merge jobs are spawned on-the-fly with HITSMerge_tf,
• Largest test that we tried so far:

- 60 Haswell nodes with 32 cores each,
- 100k events to process with 1 event pre ‘Event Range’,
- Spawn merge jobs every 100 events to form 1000 merged HITS files.

• No bottlenecks found so far in Ray.

26 September 2019 Miha Muškinja

Close-up — two AthenaMP instances on Haswell nodes

"7

AthenaMP 
Initialization

Event 
Processing

Worker

Worker 
Initialization

Cori Haswell Nodes 
- 32 cores / node
- 128 GB / node

https://www.nersc.gov/users/computational-systems/cori/configuration/cori-phase-i/

26 September 2019 Miha Muškinja

Close-up — two AthenaMP instances on KNL nodes

"8

AthenaMP 
Initialization

Event 
Processing

Worker

Worker 
Initialization

Cori KNL Nodes 
- 68 cores / node

https://www.nersc.gov/users/computational-systems/cori/configuration/knl-processor-modes/

26 September 2019 Miha Muškinja

Large Haswell job example (60 AthenaMP instances, 100k events)

"9

AthenaMP 
Initialization

Event 
Processing

Worker

Worker 
Initialization

Cori Haswell Nodes 
- 32 cores / node
- 128 GB / node

On-the-fly merging 
1000 merge jobs, 
100 events per job

Merge  
Job

Cut-off optimization possible
to save allocation time

https://www.nersc.gov/users/computational-systems/cori/configuration/cori-phase-i/

26 September 2019 Miha Muškinja

Raythena running scheme

"10

$ sbatch —image mmuskinj/centos7-atlasos-ray:1.0.0 —module=cvmfs

 $ shifter ./ray_start_head.sh

$ srun shifter ./ray_start_other.sh &  
 

$ shifter ./run_raythena.sh

• Ray, Raythena, and Athena are all running in a container on all nodes,
• At NERSC we are using Shifter containers which are built from Docker

images,
• Can be ported to other HPCs without too much effort.

26 September 2019 Miha Muškinja

Future plans

• We present a proof-of-concept Ray application for the ATLAS Event Service,
• Our next steps include two main projects:

- Expand horizontally: turn this into a ‘production quality’ application with full
error handling and connection to the outside world (i.e. Panda, Harvester,
Pilot v2, …),

- Vertical integration: reproduce other layers of ATLAS workflow with Ray,
• Available person-power at LBL:

- Paolo, Vakho, Charles, Illya, Miha, Julien Esseiva (MSc at HES-SO
Switzerland, with us until Feb 2020), Rollin Thomas (NERSC).

"11

26 September 2019 Miha Muškinja

Connecting to the outside world (horizontal expansion)

• Our goal for this workshop is to work together with the experts (Doug, Paul,
Tadashi, et. al.) to figure out the details and benefits of using Ray for Run 3 job
scheduling,

• We have a designated hands-on session tomorrow: 
https://indico.physics.lbl.gov/indico/event/955/#b-293-breakouts-ray-event-serv

"12

https://indico.physics.lbl.gov/indico/event/955/#b-293-breakouts-ray-event-serv

26 September 2019 Miha Muškinja

Digging deeper into Athena (vertical expansion)

• The long-term project is to interface Athena/Gaudi algorithms directly to Ray
for a much finer control over scheduling the workload,

• This would replace the current event loop with Ray and enable scheduling of
a single event across several nodes:
- Advantage: maximize throughput by more efficient/tailored scheduling of

algorithms to computing resources (e.g., CPU vs GPU),
• Our most promising idea is to use Athena’s python EventLoopManager and

rewrite it with Ray wrappers.

"13

for name in theApp.TopAlg:
 alg = theApp.algorithm(name[name.find('/')+1 :])
 if not alg._ialg:
 alg.retrieveInterface()
 ialg = alg._ialg
 ialg.execState(ctx).reset()
 result = ialg.sysExecute(ctx)
 if result.isFailure():
 from AthenaCommon.Logging import log as msg
 msg.error("Execution of algorithm %s failed", name)
 return result.getCode()

PyAthenaEventLoopMgr.py

topSequence
- Algorithm1
- Algorithm2
- …
- AlgorithmN

https://gitlab.cern.ch/atlas/athena/blob/master/Control/AthenaServices/python/PyAthenaEventLoopMgr.py

26 September 2019 Miha Muškinja

Conclusion

• We are exploring applicability of a distributed execution framework (Ray) to
ATLAS workflows,

• So far we have a working prototype of a Ray-based ATLAS Event Service,
- We are working with the experts on integrating this system in the ATLAS’

global job scheduling system via Panda,
- A stand-alone version successfully tested on Cori Haswell and KNL nodes,
- Can be fully run from containers and is therefore portable to other systems,

• Longer-term-plan is to divide the ATLAS workflow into base components
(Algorithms) and interface them directly to Ray.

"14

BACKUPBACKUP

26 September 2019 Miha Muškinja

Ray documentation and tutorials

• Ray has a very rich documentation hosted on readthedocs:
- https://ray.readthedocs.io/en/latest/index.html,

• Hands-on tutorials with exercises available in form of jupyter notebooks,
• Since Feb 2019, Intel hosts an 8-week course about distributed AI computation

with Ray: https://software.intel.com/en-us/ai/courses/distributed-AI-ray.

"16

https://ray.readthedocs.io/en/latest/index.html
https://software.intel.com/en-us/ai/courses/distributed-AI-ray
https://software.intel.com/en-us/ai/courses/distributed-AI-ray

26 September 2019 Miha Muškinja

Ray 101

• One driver application (running on any compute node) controls all nodes in a
cluster (HPC) that are connected via TCP to a redis server,

• Tasks are first scheduled locally (Local Scheduler) if resources are available,
otherwise they are scheduled globally via the Global Scheduler.

"17

https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/

26 September 2019 Miha Muškinja

Ray Application Layer

• Ray maintains three types of processes:
- Driver: a process executing the user program,
- Worker: a stateless process that executes tasks invoked by the driver or

another worker. Workers are started automatically and execute tasks
serially without maintaining a local state,

"18

- Actor: a stateful process that
executes only the method it
exposes. They execute
methods serially and each
method depends on the
state resulting from the
previous execution.

26 September 2019 Miha Muškinja

Asynchronous communication between the Driver and Actors

"19

Driver

A1

A2

A3

Driver pings all Actors
simultaneously

A1

Actor communicates with
AthenaMP via yampl

Actor reports back either:
• Ready for new event,
• Finished processing an event range,

- Driver is aware of the processed events,
• Event range failed.
Driver send back either:
• New event range for processing,
• Instruction to communicate with AthenaMP,
• Instruction to terminate AthenaMP.

A2 A2 A2 A2

A3 A3 A3 A3

A1

• Asynchronous communication is implemented in a few 100 python lines using Ray
explicit parallelism expressions,

• There is no redundant communication; Actors independently communicate with
AthenaMP.

26 September 2019 Miha Muškinja

Ray Functions and Actors

• A Ray parallel application is constructed with python decorations:

"20

@ray.remote
def simpleFunction(a, b):
 # wait for 5 seconds
 time.sleep(5)
 # return sum
 return a + b

@ray.remote
class Counter(object):
 def __init__(self):
 self.value = 0

 def increment(self):
 self.value += 1
 return self.value

Task executed at a worker Actor process

this returns immediately
r = simpleFunction.remote(2, 4)

this will be executed 
 # after 5 seconds
print(ray.get(r))

Driver application

26 September 2019 Miha Muškinja

Athena framework in ATLAS

• Athena is the main software framework in ATLAS used for all data analysis
steps: event generation, simulation, digitization, reconstruction, user analysis,

• Athena is based on the common Gaudi framework that is used by ATLAS,
LHCb and FCC,

• Software that we are designing and covering in this talk is tailored to
efficiently run Athena applications on HPCs.

"21

https://gitlab.cern.ch/atlas/athena
http://proj-gaudi.web.cern.ch/proj-gaudi/

